Software Distribution
with
ESP Package Manager

MICHAEL R. SWEET

JIM JAGIELSKI

Software Distribution with ESP Package Manager
Copyright © 2020 by Jim Jagielski
Copyright © 2006-2020 by Michael R Sweet

Copyright © 2006-2010 by Easy Software Products

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file
except in compliance with the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the
License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
KIND, either express or implied. See the License for the specific language governing
permissions and limitations under the License.

Software Distribution with ESP Package Manager

Table of Contents

e = = Lo 1
NOLatioN CONVENEIONS. ... i et e e e eenns 1
ADDIEVIATIONS. ..o e e e 2
Other REFEIENCES. ...t ettt e et e e e e e e e ees 2
Help Me Improve This BOOK.L.... ... 2
ACKNOWIEAGMENES. ... 2

R [o w e [BT o Lo o N o TN =1 |V 5
L= L L = PP UPPT PPN 5
History and EVOIULION.. ... e 5
Existing Software Packaging SYyStemS.......oiviiiiiiiiii 5
DESIigN GOAIS Of EPM....iiiiiiiiii ittt e e e e st e 7
ST 0101 of 1 PP 7

2B = TUT1 I [T Yo =1 = OO 9
=To [ST1 =T aT=] oL PPN 9
Configuring the SOfIWarE 9
BUIldinNg the SOfWarE. ... 10
INStalling the SOfIWaAIE. . ..o 10

3 - Packaging Your Software wWith EPM.o e 15
TG BaSICS. .ttt ettt et et e e et e e e e 15
Building @ SOftware PacKage........viiuiiiiiiiiic e 17
PaCKAGE FilES .. it 19

4 - Advanced Packaging With EPM.. ... e e aeaaaes 21
INCIUAIiNG Other List Fil@s.. ... i 21
DY o1=T gl [T o ol 1T PP PP 21
1Yol] o =T PPN 22
CoNditioNal Dir@CHIVES.ui et 24
Protecting Object Files from SEripPiNG.....cvvi i 25
SOfEWAIE PalChes. . i 25
VATTADIES. . e 25
LTS Yol T o] =3 PSPPI 26
Literal Package Data.......ciii i 26

5 - EPM Packaging EXamples. 29
Packaging the EPM SOftWare........oivuiiiiiiii e 29

Apache LICense, VersSionN 2.0t 31
APPENDIX: How to apply the Apache License to your work..........cooovviviiiniiiniiiiniinnnn, 33

B - Command ReTereNCa e 35
=T o] a1 PPN 36
EPIMINSEAI(L. ettt ettt 39
015G o1 41 11 (1 PP 41
Y=L U1 o (o 1 PPN 43

C - List File ReferenCe.o i e 45
The EPM List File FOrmMat. ... oot 45

The SetUP.LYPES Fill. e 50

ii

Software Distribution with ESP Package Manager

Preface

This book provides a tutorial and reference for the ESP Package Manager ("EPM") software,
version 5.0, and is organized into the following chapters and appendices:

¢ 1 - Introduction to EPM

e 2 - Building EPM

¢ 3 - Packaging Your Software with EPM
¢ 4 - Advanced Packaging with EPM

¢ 5 - EPM Packaging Examples

¢ A - Software License Agreement

¢ B - Command Reference
o C - List File Reference

Notation Conventions

The names of commands; the first mention of a command or function in a chapter is followed
by a manual page section number:

epm
epm(1)

File and directory names:

/var
Jusr/bin/epm

Screen output:
Request ID is Printer-123

Literal user input; special keys like ENTER are in ALL CAPS:
1p -d printer filename ENTER

Long commands are broken up on multiple lines using the backslash (\) character; enter the
commands without the backslash:

foo start of long command \
end of long command ENTER

Numbers in the text are written using the period (.) to indicate the decimal point:

12.3

Preface 1

Software Distribution with ESP Package Manager

Abbreviations

The following abbreviations are used throughout this book:

kb

Kilobytes, or 1024 bytes
Mb

Megabytes, or 1048576 bytes
Gb

Gigabytes, or 1073741824 bytes

Other References

https://jimjag.github.io/epm/
The official home page of the ESP Package Manager software.

http://www.debian.org/devel/
Debian Developers' Corner

http://techpubs.sgi.com/
IRIX Documentation On-Line

http://www.rpm.org/
The Red Hat Package Manager home page.

http://docs.sun.com/
Solaris Documentation On-Line

Help Me Improve This Book!

We've done my best to ensure that this book is both accurate and clear. If you find errors or

have a suggestion for improving the book, please file a bug at:

https://github.com/jimjag/epm/issues

Acknowledgments
We'd like to thank the following people for their contributions to EPM:

e Gareth Armstrong: HP-UX and %release enhancements
¢ Nicolas Bazin: Openserver and Unixware support

¢ Richard Begg: HP-UX fixes

¢ Dirk Datzert: Bug fixes

¢ Alan Eldridge: Makefile and RPM fixes

¢ Vicentini Emanuele: IRIX enhancements

¢ Jeff Harrell: IRIX enhancements

¢ Lars Kellogg-Stedman: Debian fixes

¢ Jochen Kmietsch: mkepmlist fixes

Abbreviations

https://jimjag.github.io/epm/
http://www.debian.org/devel/
http://techpubs.sgi.com/
http://www.rpm.org/
http://docs.sun.com/
https://github.com/jimjag/epm/issues

Software Distribution with ESP Package Manager

e Aneesh Kumar K.V.: Tru64 setld package support

¢ David Lee: Build system improvements

e Scott Leerssen: mkepmlist fixes, BSD package support
e Jeff Licquia: Debian support/enhancements

¢ David Maltz: AIX fixes

¢ Joel Nordell: SCO fixes

e Rok Papez: Bug fixes and absolute output directory support
* Holger Paschke: Documentation fixes

¢ Phil Reynolds: OpenBSD fixes

e Ganesan Rajagopal: Solaris fixes

e Uwe Rasche: AIX support

¢ Ralf Rohm: Solaris fixes

* Jochen Schaeuble: epminstall fixes

¢ Jason Shiffer: HP-UX fixes

¢ Andrea Suatoni: IRIX fixes

* Andy Walter: QNX support

* Geoffrey Wossum: --output-directory option

® Jean Yves: BSD package and mkepmlist fixes

Acknowledgments

Software Distribution with ESP Package Manager

Acknowledgments

1 - Introduction to EPM

This chapter provides an introduction to the ESP Package Manager ("EPM").

What is EPM?

Software distribution under UNIX/Linux can be a challenge, especially if you ship software for
more than one operating system. Every operating system provides its own software
packaging tools and each has unique requirements or implications for the software
development environment.

The ESP Package Manager ("EPM") is one solution to this problem. Besides its own "portable"
distribution format, EPM also supports the generation of several vendor-specific formats. This
allows you to build software distribution files for almost any operating system from the same
sources.

History and Evolution

When Easy Software Products was founded by me in 1993, the company originally shipped
software only for the SGI IRIX operating system. Support was added for Solaris in 1997,
followed quickly by HP-UX in 1998.

Each new operating system and supported processor required a new set of packaging files.
While this worked, it also meant keeping all of the packaging files synchronized manually.
Needless to say, this process was far from perfect and there was more than one distribution
that was not identical on all operating systems.

As | began developing CUPS (https://www.cups.org/) in 1997, the initial goal was to add
support for two additional operating systems: Linux and Compaq Tru64 UNIX. If | was to
avoid the mistakes of the past, | clearly had to change how software distributions were
produced.

The first version of EPM was released in 1999 and supported so-called "portable" software
distributions that were not tied to any particular operating system or packaging software.
Due to popular demand, we added support for vendor-specific packaging formats in the
second major release of EPM, allowing the generation of portable or "native" distributions
from one program and one set of software distribution files.

Existing Software Packaging Systems

As | looked for a solution to our problem, we naturally investigated the existing open-source
packaging systems. Under Linux, | looked at the Red Hat Package Manager ("RPM") and
Debian packaging software ("dpkg" and "dselect"). For the commercial UNIX's | looked at the
vendor-supplied packaging systems. Table 1.1 shows the results of my investigation.

1 - Introduction to EPM 5

https://www.cups.org/

Software Distribution with ESP Package Manager

Table 1.1: Software Packaging Formats

Operating . . Cross- Up- Con- Re- Re- Config Map Un-
Format Systems1l Binaries Platform Patches grades flicts quires places Files Files install
installp AIX Yes No No No Yes Yes No No No Yes
pkg_add FreeBSD Yes Yes2 No No No No No No No Yes
NetBSD
2
pkg_add OpenBSD Yes Yes No No Yes Yes No No No Yes
Ubuntu Linux
dpkg Debian Yes Yes2 No Yes Yes Yes Yes Yes No Yes
GNU/Linux
depot HP-UX Yes No Yes Yes Yes Yes No Yes Yes Yes
inst IRIX Yes No Yes Yes Yes Yes Yes Yes Yes Yes
Install.app macOS Yes No No Yes No No No No No No
pkgadd Solaris Yes No Yes No Yes Yes No Yes Yes Yes
CentOS
rom Red Hat Yes Yes2 No Yes Yes Yes No Yes No Yes
SuSE
setld Tru64 UNIX Yes No No No Yes Yes No No No Yes
slackware | Slackware Linux Yes No No No Yes Yes No No No Yes

1. Standard packaging system for named operating systems.
2. These packaging systems are cross-platform but require the package management
utilities to be installed on the platform before installing the package.

As you can see, none of the formats supported every feature we were looking for. One
common fault of all these formats is that they do not support a common software
specification file format. That is, making a Debian software distribution requires significantly
different support files than required for a Solaris pkg distribution. This makes it extremely
difficult to manage distributions for multiple operating systems.

All of the package formats support binary distributions. The RPM and Debian formats also
support source distributions that specifically allow for recompilation and installation. Only
the commercial UNIX formats support patch distributions - you have to completely upgrade a
software package with RPM and Debian. All but the Solaris pkg format allow you to upgrade
a package without removing the old version first.

When building the software packages, RPM and Debian force you to create the actual
directories, copy the files to those directories, and set the ownerships and permissions. You
essentially are creating a directory for your software that can be archived in the
corresponding package format. To ensure that all file permissions and ownerships are
correct, you must build the distribution as the root user or use the fakeroot software,
introducing potential security risks and violating many corporate security policies. It can also
make building distributions difficult when dynamic data such as changing data files or
databases is involved.

The commercial UNIX formats use software list files that map source files to the correct
directories and permissions. This allows for easier delivery of dynamic data, configuration
management of what each distribution actually contains, and eliminates security issues with
special permissions and building distributions as the root user. Using the proprietary format
also has the added benefit of allowing for software patches and using the familiar software
installation tools for that operating system. The primary disadvantage is that the same
distributions and packaging software cannot be used on other operating systems.

6 Existing Software Packaging Systems

Software Distribution with ESP Package Manager
Design Goals of EPM

EPM was designed from the beginning to build binary software distributions using a common
software specification format. The same distribution files work for all operating systems and
all distribution formats. Supporting source code distributions was not a goal since most RPM
and Debian source distributions are little more than wrapping around a compressed tar file
containing the source files and a configure script.

Over the years, additional features have made their way into EPM to support more advanced
software packages. Whenever possible, EPM emulates a feature if the vendor package
format does not support it natively.

Resources

The EPM project page provides access to the current software, documentation, and issue
tracker for EPM:

https://jimjag.github.io/epm/

The EPM source code can be downloaded in compressed tar files or via the popular
Subversion software. Please see the EPM project page for complete instructions.

Design Goals of EPM

https://jimjag.github.io/epm/

Software Distribution with ESP Package Manager

Resources

2 - Building EPM
This chapter shows how to configure, build, and install the ESP Package Manager.

Requirements

EPM requires very little pre-installed software to work. Most items will likely be provided as
part of your OS. Your development system will need a C compiler, the make (1) program
(GNU, BSD, and most vendor make programs should work), a POSIX shell (Bourne, Korn,
Bash, etc.), and gzip(1).

The optional graphical setup program requires a C++ compiler, the FLTK library, version
1.1.x or 1.3.x, and (for UNIX/Linux) the X11 libraries. FLTK is available at the following URL:

http://www.fltk.org/

Your end-user systems will require a POSIX shell, the df (1) program, the tar(1) program,
and the gzip(1) program to install portable distributions. All but the last are standard items,
and most vendors include gzip as well.

EPM can also generate vendor-specific distributions. These require the particular vendor tool,

such as rpm(8) and dpkg(8), to generate the software distribution on the development
system and load the software distribution on the end-user system.

Configuring the Software

EPM uses GNU autoconf (1) to configure itself for your system. The configure script is used
to configure the EPM software, as follows:

./configure ENTER

Choosing Compilers

If the configure script is unable to determine the name of your C or C++ compiler, set the
CC and CXX environment variables to point to the C and C++ compiler programs,
respectively. You can set these variables using the following commands in the Bourne, Korn,
or Bash shells:

export CC=/foo/bar/gcc ENTER
export CXX=/foo/bar/gcc ENTER

If you are using C shell or tcsh, use the following commands instead:

setenv CC /foo/bar/gcc ENTER
setenv CXX /foo/bar/gcc ENTER

Run the configure script again to use the new commands.
Choosing Installation Directories

The default installation prefix is /usr/local, which will place the EPM programs in
Jusr/local/bin, the setup GUI in /usr/local/lib/epm, and the man pages in /usr/local/share/man.

2 - Building EPM 9

http://www.fltk.org/

Software Distribution with ESP Package Manager

Use the - -prefix option to relocate these files to another directory:
./configure --prefix=/example/path ENTER

The configure script also accepts the --bindir, --1ibdir, and - -mandir options to
relocate each directory separately, as follows:

./configure --bindir=/example/path/bin --libdir=/example/path/lib \
--mandir=/example/path/share/man ENTER

Options for the Setup GUI

The setup GUI requires the FLTK library. The configure script will look for the fltk-config
utility that comes with FLTK. Set the FLTKCONFIG environment variable to the full path of
this utility if it cannot be found in the current path:

setenv FLTKCONFIG /foo/bar/bin/fltk-config ENTER
or:

FLTKCONFIG=/foo/bar/bin/fltk-config ENTER
export FLTKCONFIG

Building the Software

Once you have configured the software, type the following command to compile it:
make ENTER

Compilation should take a few minutes at most. Then type the following command to
determine if the software compiled successfully:

make test ENTER
Portable distribution build test PASSED.
Native distribution build test PASSED.

The test target builds a portable and native distribution of EPM and reports if the two
distributions were generated successfully.

Installing the Software

Now that you have compiled and tested the software, you can install it using the make
command or one of the distributions that was created. You should be logged in as the
super-user unless you specified installation directories for which you have write permission.
The su(8) command is usually sufficient to install software:

su ENTER

Operating systems such as macOS do not enable the root account by default. The sudo(8)
command is used instead:

sudo installation command ENTER

10 Configuring the Software

Software Distribution with ESP Package Manager

Installing Using the make Command

Type the following command to install the EPM software using the make command:

make install ENTER

Installing EPM setup in /usr/local/lib/epm

Installing EPM programs in /usr/local/bin

Installing EPM manpages in /usr/local/share/man/manl
Installing EPM documentation in /usr/local/share/doc/epm

Use the sudo command to install on macOS:

sudo make install ENTER

Installing EPM setup in /usr/local/lib/epm

Installing EPM programs in /usr/local/bin

Installing EPM manpages in /usr/local/share/man/manl
Installing EPM documentation in /usr/local/share/doc/epm

Installing Using the Portable Distribution

The portable distribution can be found in a subdirectory named using the operating system,
version, and architecture. For example, the subdirectory for a Linux 2.4.x system on an
Intel-based system would be linux-2.4-intel. The subdirectory name is built from the
following template:

os-major.minor-architecture

The os name is the common name for the operating system. Table 2.1 lists the abbreviations
for most operating systems.

The major.minor string is the operating system version number. Any patch revision
information is stripped from the version number, as are leading characters before the major
version number. For example, HP-UX version B.11.11 will result in a version number string of
11.11.

Table 2.1: Operating System Name Abbreviations

Operating System | Name
AIX aix
Compaqg Tru64 UNIX

Digital UNIX truo4
OSF/1

FreeBSD freebsd
HP-UX hpux
IRIX irix
Linux linux
macOS 0SX
NetBSD netbsd
OpenBSD openbsd
Solaris solaris

Installing the Software 11

Software Distribution with ESP Package Manager

Table 2.2: Processor Architecture Abbreviations

Processor(s) Abbreviation
Compagq Alpha alpha
HP Precision Architecture hppa
INTEL 80x86 intel
INTEL 80x86 w/64bit Extensions |x86 64
MIPS RISC mips
IBM Power PC powerpc
SPARC
MicroSPARC sparc
UltraSPARC

The architecture string identifies the target processor. Table 2.2 lists the supported
processors.

Once you have determined the subdirectory containing the distribution, type the following
commands to install EPM from the portable distribution:

cd os-major.minor-architecture ENTER
./epm.install ENTER

The software will be installed after answering a few yes/no questions.
Installing Using the Native Distribution
The test target also builds a distribution in the native operating system format, if supported.

Table 2.3 lists the native formats for each supported operating system and the command to
run to install the software.

12 Installing the Software

Software Distribution with ESP Package Manager

Table 2.3: Native Operating System Formats

Operating System

Format

Command

AIX

aix

installp -ddirectory epm

Compaqg Tru64 UNIX

Digital UNIX setld |setld -a directory

OSF/1

Eﬁ%%%D bsd cd directory

OpenBSD pkg add epm

HP-UX depot |([swinstall -f directory

IRIX inst swmgr -f directory

Linux rpm rpm -i directory/epm-4.1.rpm
macOS 0SX open directory/epm-4.1.pkg
Solaris pkg pkgadd -d directory epm

Installing the Software

13

14

Software Distribution with ESP Package Manager

Installing the Software

3 - Packaging Your Software with EPM

This chapter describes how to use EPM to package your own software packages.

The Basics

EPM reads one or more software "list" files that describe a single software package. Each list
file contains one or more lines of ASCII text containing product or file information.

Comments lines start with the # character, directive lines start with the % character,

variables lines start with the $ character, and file, directory, init script, and symlink lines
start with a letter.

Product Information

Every list file needs to define the product name, copyright, description, license, README file,
vendor, and version:

%sproduct Kung Foo Firewall

%scopyright 1999-2005 by Foo Industries, ALl Rights Reserved.
%svendor Foo Industries

%license COPYING

%sreadme README

%sdescription Kung Foo firewall software for your firewall.
%sversion 1.2.3p4 1020304

The %license and %readme directives specify files for the license agreement and README
files for the package, respectively.

The %product, %scopyright, svendor, and %description directives take text directly from
the line.

The %version directive specifies the version numbers of the package. The first number is the

human-readable version number, while the second number is the integer version number. If
you omit the integer version number, EPM will calculate one for you.

Files, Directories, and Symlinks

Each file in the distribution is listed on a line starting with a letter. The format of all lines is:
type mode owner group destination source options

Regular files use the letter f for the type field:
f 755 root sys /usr/bin/foo foo

Configuration files use the letter c for the type field:

C 644 root sys /etc/foo.conf foo.conf

3 - Packaging Your Software with EPM 15

Software Distribution with ESP Package Manager

Directories use the letter d for the type field and use a source path of "-":
d 755 root sys /var/spool/foo -
Finally, symbolic links use the letter 1 (lowercase L) for the type field:
1 000 root sys /usr/bin/foobar foo
The source field specifies the file to link to and can be a relative path. Just as with the 1n

command, source paths are relative to the destination directory. For example, the symbolic
link /usr/bin/foobar above points to the file /usr/bin/foo.

Wildcards

Wildcard patterns can be used in the source field to include multiple files on a single line.
The destination field contains the destination directory for the matched files:

f 0444 root sys /usr/share/doc/foo *.html

For example, if the source directory contains three HTML files, bar.html, baz.html, and
foo.html, the wildcard line above would expand to:

f 0444 root sys /usr/share/doc/foo/bar.html bar.html
f 0444 root sys /usr/share/doc/foo/baz.html baz.html
f 0444 root sys /usr/share/doc/foo/foo.html foo.html

Subpackages

Subpackages are optional parts of your software package. For example, if your package
includes developer files, you might provide them as a subpackage so that users that will not
be developing add-ons to your software can omit them from the installation.

Note:

Subpackages are implemented as native subsets of the main package
for the AIX, HPUX, IRIX, Solaris, and Tru64 formats and as separate
packages that depend on the main (parent) package for all other
formats.

To define a subpackage, use the %subpackage directive followed by a %description
directive:

%ssubpackage foo
%description One-Line Description of Foo

Files, scripts, and dependencies that follow the %subpackage directive are treated as part of

that subpackage. Specifying the %$subpackage directive with no name returns processing to
the main (parent) package.

16 The Basics

Software Distribution with ESP Package Manager

You can alternate between subpackages as many times as you like:

%description Main package description
f 0755 /usr/bin/bar bar

%ssubpackage foo
%sdescription Foo programs
f 0755 /usr/bin/foo foo
%requires bla

%ssubpackage
f 0644 /usr/share/man/manl/bar.1

%subpackage foo
f 0644 /usr/share/man/manl/foo.1

The above example creates a package containing the "bar" program and man page with a

subpackage containing the "foo" program and man page. The "foo" subpackage depends
both on the main package (implicit srequires) and another package called "bla".

Building a Software Package

The epm(1) program is used to build software package from list files. To build a portable
software package for an application called "foo", type the following command:

epm foo ENTER

If your application uses a different base name than the list file, you can specify the list
filename on the command-line as well:

epm foo bar.list ENTER

Installing the Software Package

Once you have created the software package, you can install it. Portable packages include
an installation script called product.install, where "product" is the name of the package:

cd os-release-arch ENTER
./product.install ENTER

After answering a few yes/no questions, the software will be installed. To bypass the
questions, run the script with the now argument:

cd os-release-arch ENTER
./product.install now ENTER

Building a Software Package 17

Software Distribution with ESP Package Manager
Figure 3.1: The EPM Setup GUI

Instal

Welcome

This program allows you toinstall the following software:

= ESP Package Manager, 4.4
= ESP Package Manager - Documentation, 4.4
= ESP Package Manager - Man pages, 4.4

4 Next »] [Cancel]

Including the Setup GUI

EPM also provides an optional graphical setup program (Figure 3.1). To include the setup
program in your distributions, create a product logo image in GIF or XPM format and use the

- -setup-image option when creating your distribution:
epm --setup-image foo.xpm foo ENTER

This option is only supported when creating for portable and macOS software packages.

18 Building a Software Package

Software Distribution with ESP Package Manager

Creating Vendor Package Files

EPM can also produce vendor-specific packages using the -f option:
epm -f format foo bar.list ENTER

The format option can be one of the following keywords:

e aix - AlX software packages.

e bsd - FreeBSD, NetBSD, or OpenBSD software packages.
e depot or swinstall - HP-UX software packages.

¢ dpkg - Debian software packages.

einst or tardist - IRIX software packages.

e native - "Native" software packages (RPM, INST, DEPOT, PKG, etc.) for the platform.
¢ 05X - macOS software packages.

* pkg - Solaris software packages.

e portable - Portable software packages (default).

e rpm - Red Hat software packages.

e setld - Tru64 (setld) software packages.

e slackware - Slackware software packages.

Everything in the software list file stays the same - you just use the - f option to select the
format. For example, to build an RPM distribution of EPM, type:

epm -f rpm epm

The result will be one or more RPM package files instead of the portable package files.

Package Files

EPM creates the package files in the output directory. As mentioned in Chapter 1, "Installing
Using the Portable Distribution", the default output directory is based on the operating
system name, version, and architecture. Each package format will leave different files in the
output directory.

AlIX Package Files

AIX packages are contained in a file called name.bff, where "name" is the product/package
name you supplied on the command-line.

BSD Package Files

BSD packages are contained in a file called name.tgz, where "name" is the product/package
name you supplied on the command-line.

HP-UX Package Files

HP-UX packages are contained in two files called name.depot.gz and name.depot.tgz, where
"name" is the product/package name you supplied on the command-line. The name.depot.gz
file can be supplied directly to the swinstall(1lm) command, while the name.depot.tgz file
contains a compressed tar(1) archive that can be used to install the software from CD-ROM
or network filesystem.

Building a Software Package 19

Software Distribution with ESP Package Manager

Debian Package Files

Debian packages are contained in a file called name.deb or name.deb.tgz when there are
subpackages, where "name" is the product/package name you supplied on the
command-line. The name.deb.tgz file contains a compressed tar archive containing
name.deb and name-subpackage.deb files that can be installed from CD-ROM, disk, or
network filesystem.

IRIX Package Files

IRIX packages are contained in a file called name.tardist, where "name" is the
product/package name you supplied on the command-line.

macOS Package Files

macOS packages are contained in a file called name.dmg, where "name" is the
product/package name you supplied on the command-line.

RPM Package Files

RPM packages are contained in a file called name.rom or name.rom.tgz when there are
subpackages, where "name" is the product/package name you supplied on the
command-line. The name.rom.tgz file contains a compressed tar archive containing
name.rom and name-subpackage.rpm files that can be installed from CD-ROM, disk, or
network filesystem.

Slackware Package Files

Slackware packages are contained in a file called name.tgz, where "name" is the
product/package name you supplied on the command-line.

Solaris Package Files

Solaris packages are contained in two files called name.pkg.gz and name.pkg.tgz, where
"name" is the product/package name you supplied on the command-line. The name.pkg.gz
file is a compressed package file that can be used directly with the pkgadd(1m) command,
while the name.pkg.tgz file is a compressed tar archive that can be used to install the
software from CD-ROM, disk, or network filesystem.

Tru64 Package Files

Tru64 packages are contained in a file called name.tar.gz, where "name" is the
product/package name you supplied on the command-line.

20 Package Files

4 - Advanced Packaging with EPM

This chapter describes the advanced packaging features of EPM.

Including Other List Files
The %include directive includes another list file:
%include filename

Includes can usually be nested up to 250 levels depending on the host operating system and
libraries.

Dependencies

EPM supports four types of dependencies in list files: $incompat, %provides, %replaces, and
%srequires. Table 4.1 shows the level of support for each package format.

Table 4.1: Dependency Support

Format |(%incompat|%provides|%replaces|%requires
aix No No Yes Yes
bsd Yes No No Yes
deb Yes Yes! Yes Yes
inst Yes No Yes Yes
0SX No No No No
pkg Yes No No Yes

portable Yes Yes Yes Yes
rom Yes Yes No Yes
setld No No No No

slackware No No No No
swinstall No No Yes Yes

1. Debian's package format does not currently support version numbers for $provides
dependencies.

Software conflicts and requirements are specified using the %incompat and %requires
directives.

If your software replaces another package, you can specify that using the %replaces
directive. %replaces is silently mapped to %$incompat when the package format does not
support package replacement.

If your package provides certain functionality associated with a standard name, the
%sprovides directive can be used.

4 - Advanced Packaging with EPM 21

Software Distribution with ESP Package Manager

Dependencies are specified using the package name and optionally the lower and upper
version numbers:

%requires foobar
%srequires foobar 1.0
%sincompat foobar 0.9
%sreplaces foobar
%sreplaces foobar 1.2 3.4
%sprovides foobar

or the filename:

%requires /usr/lib/1libfoobar.so
%sincompat /usr/lib/libfoobar.so.1.2

Package dependencies are currently enforced only for the same package format, so a
portable distribution that requires package "foobar" will only look for an installed "foobar"
package in portable format.

Filename dependencies are only supported by the Debian, portable, and RPM distribution
formats.

Scripts

Bourne shell script commands can be executed before or after installation, patching, or
removal of the software. Table 4.2 shows the support for scripts in each package format.

The %preinstall and %postinstall directives specify commands to be run before and after
installation, respectively:

%spreinstall echo Command before installing
%spostinstall echo Command after installing

Similarly, the %sprepatch and %postpatch directives specify commands to be executed
before and after patching the software:

%sprepatch echo Command before patching
%spostpatch echo Command after patching

Finally, the %preremove and %postremove directives specify commands that are run before
and after removal of the software:

%spreremove echo Command before removing
%spostremove echo Command after removing

22 Dependencies

Software Distribution with ESP Package Manager

Table 4.2: Scripts Support

Format %preinstall [%postinstall |%prepatch |[%postpatch [Yopreremove [Y%opostremove
aix Yes Yes No No Yes Yes
bsd No Yes No No Yes No
deb Yes Yes No No Yes Yes
inst Yes Yes No No Yes Yes
0SX Yes Yes No No No No
pkg Yes Yes No No Yes Yes

portable Yes Yes Yes Yes Yes Yes
rpm Yes Yes No No Yes Yes
setld Yes Yes No No Yes Yes
slackware No Yes No No No No
swinstall Yes Yes No No Yes Yes

To include an external script file, use the <filename notation:

To include multiple lines directly, use the <<string notation (a.k.a. a "here" document):

Note that all commands specified in the list file will use the variable expansion provided by
EPM, so be sure to quote any dollar sign ($) characters in your commands. For example,

%spostinstall <filename

%spostinstall <<EOF
echo Command before installing
/usr/bin/foo

"$foo" is replaced by the value of "foo", but "$$foo" becomes "$foo".

Scripts

23

Software Distribution with ESP Package Manager

Conditional Directives

The %system directive can match or not match specific operating system names or versions.
The operating system name is the name reported by uname in lowercase, while the operating
system version is the major and minor version number reported by uname -r:

%system macos

Only include the following files when building a distribution for the macOS operating
system.

%system linux-2.0

Only include the following files when building a distribution for Linux 2.0.x.

%system !macos !linux-2.0

Only include the following files when building a distribution for operating systems
other than macOS and Linux 2.0.x.

The special name all is used to match all operating systems:
%ssystem all

For format-specific files, the %$format directive can be used:

sformat rpm

Only include the following files when building an RPM distribution.
sformat !rpm

Only include the following files when not building an RPM distribution.x.
%sformat all

Include the following files for all types of distributions.
The %arch directive can match or not match specific architectures. The architecture name is
the name reported by uname -m; "arm" is a synonym for "armv6", "armv7", and "armv8",
"intel" is a synonym for "i386", "i486", "i586", and "i686", and "powerpc" is a synonym for
Ilppcll:
%sarch intel

Only include the following files when building a package for 32-bit Intel processors.

%arch armvé

Only include the following files when building a package for ARMv6 processors.

24 Conditional Directives

Software Distribution with ESP Package Manager

%ssystem !powerpc

Only include the following files when building a package for processors other than
PowerPC.

The special name all is used to match all architectures:
%sarch all

Finally, EPM can conditionally include lines using the %if, %elseif, %ifdef, %Selseifdef,
%else, and %endif directives.

%1if directives include the text that follows if the named variable(s) are defined to a
non-empty string:

%1if FOO

f 755 root sys /usr/bin/foo foo
%elseif BAR

f 755 root sys /usr/bin/bar bar
%sendif

%ifdef directives only include the text if the named variable(s) are defined to any value:

%ifdef OSTYPE

f 755 root sys /usr/bin/program program-$0STYPE
%selse

f 755 root sys /usr/bin/program program.sh
%sendif

Protecting Object Files from Stripping

The nostrip() option can be included at the end of a file line to prevent EPM from stripping
the symbols and debugging information from a file:

f 755 root sys /usr/lib/libfoo.so libfoo.so nostrip()

Software Patches

EPM supports portable software patch distributions which contain only the differences
between the original and patch release. Patch files are specified using uppercase letters for
the affected files. In the following example, the files /usr/bin/bar and /etc/foo.conf are
marked as changed since the original release:

f 755 root sys /usr/bin/foo foo

F 755 root sys /usr/bin/bar bar

f 755 root sys /usr/share/man/manl/foo.l foo.man
f 755 root sys /usr/share/man/manl/bar.l bar.man
C 644 root sys /etc/foo.conf foo.conf

Variables

EPM imports the current environment variables for use in your list file. You can also define
new variable in the list file or on the command-line when running EPM.

Protecting Object Files from Stripping 25

Software Distribution with ESP Package Manager

Variables are defined by starting the line with the dollar sign ($) followed by the name and
value:

$name=value

$prefix=/usr
$exec_prefix=${prefix}
$bindir=$exec_prefix/bin

Variable substitution is performed when the variable is defined, so be careful with the
ordering of your variable definitions.

Also, any variables you specify in your list file will be overridden by variables defined on the
command-line or in your environment, just like with make. This can be a useful feature or a
curse, depending on your choice of variable names.

As you can see, variables are referenced using the dollar sign ($). As with most shells,

variable names can be surrounded by curly braces (${variable}) to explicitly delimit the
name.

If you need to insert a $ in a filename or a script, use $$:

%sinstall echo Enter your name:
%install read $$name
%install echo Your name is $$name.

Init Scripts

Initialization scripts are generally portable between platforms, however the location of
initialization scripts varies greatly.

The i file type can be used to specify and init script that is to be installed on the system.
EPM will then determine the appropriate init file directories to use and create any required
symbolic links to support the init script:

i 755 root sys foo foo.sh
The previous example creates an init script named foo on the end-user system and will
create symbolic links to run levels 0, 2, 3, and 5 as needed, using a sequence number of 00
(or 000) for the shutdown script and 99 (or 999) for the startup script.

To specify run levels and sequence numbers, use the runlevel(), start(), and stop()
options:

i 755 root sys foo foo.sh "runlevel(02) start(50) stop(30)"
Literal Package Data
Sometimes you need to include format-specific package data such as keywords, signing

keys, and response data. The %literal(section) directive adds format-specific data to the
packages you create. Literal data is currently only supported for RPM and PKG packages.

26 Variables

Software Distribution with ESP Package Manager

Debian Literal Data

Debian packages have control files that provide metadata for each package. The
%literal(control) directive can be used to provide this metadata:

%literal(control) <<EOF
Section: misc

Priority: extra

EOF

PKG Literal Data

PKG packages support request files that are used to do batch installations when installation
commands require user input. The %literal(request) directive can be used to provide this
user input:

%literal(request) <<EOF
John Doe

1 Any Lane

Forest Lawn, OH 12345
EOF

RPM Literal Data

RPM packages support numerous attributes in the "spec" file that control how the package is
created and what metadata is included with the package. The %$literal(spec) directive can
be used to provide attributes for the spec file:

%literal(spec) <<EOF

%schangelog

* Tue Aug 26 2008 John Doe <johndoe@domain.com>
- Added new feature "bar"

* Fri Aug 1 2008 John Doe <johndoe@domain.com>

- Added new feature "foo"
EOF

Literal Package Data 27

28

Software Distribution with ESP Package Manager

Literal Package Data

5 - EPM Packaging Examples

This chapter shows how the EPM and CUPS software is packaged using EPM list files. The
EPM list file example highlights the basic features of EPM, while the CUPS list file example

shows the more advanced features of EPM.

Packaging the EPM Software

The EPM software comes with its own autoconf-generated epm.list file that is used to
package and test EPM. The EPM package consists of the main package plus a
"documentation" subpackage for the documentation files and a "man" subpackage for the

man pages.

We start by defining variables for each of the autoconf directory variables:

$prefix=/usr

$exec_prefix=/usr
$bindir=${exec_prefix}/bin
$datadir=/usr/share
$docdir=${datadir}/doc/epm
$libdir=/usr/1lib
$mandir=/usr/share/man
$srcdir=.

Then we provide the general product information that is required for all packages; notice the
use of ${srcdir} to reference the COPYING and README files:

%sproduct ESP Package Manager

%scopyright 1999-2020 by Michael R Sweet, All Rights Reserved.
%scopyright 2020 by Jim Jagielski, All Rights Reserved.
%svendor Michael R Sweet

%svendor Jim Jagielski

%license ${srcdir}/COPYING

%readme ${srcdir}/README.md

%sdescription Universal software packaging tool for UNIX.
%sversion 4.6 460

After the product information, we include all of the non-GUI files that are part of EPM:

Executables
%ssystem all
f 0555 root sys ${bindir}/epm epm

f 0555 root sys ${bindir}/epminstall epminstall
f 0555 root sys ${bindir}/mkepmlist mkepmlist

Documentation
%ssubpackage documentation
%description Documentation for EPM

0444
0444
0444
0444
0444

—h —h —h —h —h

root
root
root
root
root

Man pages
%ssubpackage man

%description Man pages for EPM

f 0444 root sys ${mandir}/manl/epm.1l $srcdir/doc/epm.man

f 0444 root sys ${mandir}/manl/epminstall.l $srcdir/doc/epminstall.l

sys ${docdir}/README $srcdir/README.md

sys ${docdir}/COPYING $srcdir/COPYING

sys ${docdir}/epm-book.epub $srcdir/doc/epm-book.epub
sys ${docdir}/epm-book.html $srcdir/doc/epm-book.html
sys ${docdir}/epm-book.pdf $srcdir/doc/epm-book.pdf

5 - EPM Packaging Examples

29

Software Distribution with ESP Package Manager

f 0444 root sys ${mandir}/manl/mkepmlist.l $srcdir/doc/mkepmlist.1
f 0444 root sys ${mandir}/man5/epm.list.5 $srcdir/doc/epm.list.5

Finally, we conditionally include the GUI files depending on the state of a variable called

GUIS:

GUI files.

$GUIS=setup uninst

i

%ssubpackage

f 0555 root sys
f 0555 root sys

%ssystem macos
f 0444 root sys
%ssystem all

%subpackage man
f 0444 root sys
f 0444 root sys

%sendif

${libdir}/epm/setup setup
${libdir}/epm/uninst uninst

${datadir}/epm/default.icns default.icns

${mandir}/manl/setup.l $srcdir/doc/setup.1
${mandir}/man5/setup.types.5 $srcdir/doc/setup.types.5

30

Packaging the EPM Software

Apache License, Version 2.0

Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.

"License" shall mean the terms and conditions for use, reproduction, and distribution as
defined by Sections 1 through 9 of this document.

"Licensor" shall mean the copyright owner or entity authorized by the copyright owner that
is granting the License.

"Legal Entity" shall mean the union of the acting entity and all other entities that control, are
controlled by, or are under common control with that entity. For the purposes of this
definition, "control" means (i) the power, direct or indirect, to cause the direction or
management of such entity, whether by contract or otherwise, or (ii) ownership of fifty
percent (50%) or more of the outstanding shares, or (iii) beneficial ownership of such entity.

"You" (or "Your") shall mean an individual or Legal Entity exercising permissions granted by
this License.

"Source" form shall mean the preferred form for making modifications, including but not
limited to software source code, documentation source, and configuration files.

"Object" form shall mean any form resulting from mechanical transformation or translation
of a Source form, including but not limited to compiled object code, generated
documentation, and conversions to other media types.

"Work" shall mean the work of authorship, whether in Source or Object form, made available
under the License, as indicated by a copyright notice that is included in or attached to the
work (an example is provided in the Appendix below).

"Derivative Works" shall mean any work, whether in Source or Object form, that is based on
(or derived from) the Work and for which the editorial revisions, annotations, elaborations, or
other modifications represent, as a whole, an original work of authorship. For the purposes of
this License, Derivative Works shall not include works that remain separable from, or merely
link (or bind by name) to the interfaces of, the Work and Derivative Works thereof.

"Contribution" shall mean any work of authorship, including the original version of the Work
and any modifications or additions to that Work or Derivative Works thereof, that is
intentionally submitted to Licensor for inclusion in the Work by the copyright owner or by an
individual or Legal Entity authorized to submit on behalf of the copyright owner. For the
purposes of this definition, "submitted" means any form of electronic, verbal, or written
communication sent to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems, and issue tracking
systems that are managed by, or on behalf of, the Licensor for the purpose of discussing and
improving the Work, but excluding communication that is conspicuously marked or
otherwise designated in writing by the copyright owner as "Not a Contribution."

Apache License, Version 2.0 31

http://www.apache.org/licenses/

Software Distribution with ESP Package Manager

"Contributor" shall mean Licensor and any individual or Legal Entity on behalf of whom a
Contribution has been received by Licensor and subsequently incorporated within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of this License, each
Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge,
royalty-free, irrevocable copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the Work and such Derivative
Works in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of this License, each
Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge,
royalty-free, irrevocable (except as stated in this section) patent license to make, have
made, use, offer to sell, sell, import, and otherwise transfer the Work, where such license
applies only to those patent claims licensable by such Contributor that are necessarily
infringed by their Contribution(s) alone or by combination of their Contribution(s) with the
Work to which such Contribution(s) was submitted. If You institute patent litigation against
any entity (including a cross-claim or counterclaim in a lawsuit) alleging that the Work or a
Contribution incorporated within the Work constitutes direct or contributory patent
infringement, then any patent licenses granted to You under this License for that Work shall
terminate as of the date such litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the Work or Derivative
Works thereof in any medium, with or without modifications, and in Source or Object form,
provided that You meet the following conditions:

a. You must give any other recipients of the Work or Derivative Works a copy of this
License; and

b. You must cause any modified files to carry prominent notices stating that You
changed the files; and

c. You must retain, in the Source form of any Derivative Works that You distribute, all
copyright, patent, trademark, and attribution notices from the Source form of the
Work, excluding those notices that do not pertain to any part of the Derivative Works;
and

d. If the Work includes a "NOTICE" text file as part of its distribution, then any Derivative
Works that You distribute must include a readable copy of the attribution notices
contained within such NOTICE file, excluding those notices that do not pertain to any
part of the Derivative Works, in at least one of the following places: within a NOTICE
text file distributed as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or, within a display
generated by the Derivative Works, if and wherever such third-party notices normally
appear. The contents of the NOTICE file are for informational purposes only and do
not modify the License. You may add Your own attribution notices within Derivative
Works that You distribute, alongside or as an addendum to the NOTICE text from the
Work, provided that such additional attribution notices cannot be construed as
modifying the License.

You may add Your own copyright statement to Your modifications and may provide
additional or different license terms and conditions for use, reproduction, or distribution of
Your modifications, or for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with the conditions stated in
this License.

32 Apache License, Version 2.0

Software Distribution with ESP Package Manager

5. Submission of Contributions. Unless You explicitly state otherwise, any Contribution
intentionally submitted for inclusion in the Work by You to the Licensor shall be under the
terms and conditions of this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify the terms of any
separate license agreement you may have executed with Licensor regarding such
Contributions.

6. Trademarks. This License does not grant permission to use the trade names,
trademarks, service marks, or product names of the Licensor, except as required for
reasonable and customary use in describing the origin of the Work and reproducing the
content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or agreed to in writing,
Licensor provides the Work (and each Contributor provides its Contributions) on an "AS IS"
BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied,
including, without limitation, any warranties or conditions of TITLE, NON-INFRINGEMENT,
MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. You are solely responsible for
determining the appropriateness of using or redistributing the Work and assume any risks
associated with Your exercise of permissions under this License.

8. Limitation of Liability. In no event and under no legal theory, whether in tort (including
negligence), contract, or otherwise, unless required by applicable law (such as deliberate
and grossly negligent acts) or agreed to in writing, shall any Contributor be liable to You for
damages, including any direct, indirect, special, incidental, or consequential damages of any
character arising as a result of this License or out of the use or inability to use the Work
(including but not limited to damages for loss of goodwill, work stoppage, computer failure or
malfunction, or any and all other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing the Work or
Derivative Works thereof, You may choose to offer, and charge a fee for, acceptance of
support, warranty, indemnity, or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only on Your own behalf and
on Your sole responsibility, not on behalf of any other Contributor, and only if You agree to
indemnify, defend, and hold each Contributor harmless for any liability incurred by, or claims
asserted against, such Contributor by reason of your accepting any such warranty or
additional liability.

END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work

To apply the Apache License to your work, attach the following boilerplate notice, with the
fields enclosed by brackets "[]" replaced with your own identifying information. (Don't
include the brackets!) The text should be enclosed in the appropriate comment syntax for
the file format. We also recommend that a file or class name and description of purpose be
included on the same "printed page" as the copyright notice for easier identification within
third-party archives.

Copyright [yyyy] [name of copyright owner] Licensed under the Apache License,
Version 2.0 (the "License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law
or agreed to in writing, software distributed under the License is

APPENDIX: How to apply the Apache License to your work 33

Software Distribution with ESP Package Manager

distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
KIND, either express or implied. See the License for the specific language
governing permissions and limitations under the License.

34 APPENDIX: How to apply the Apache License to your work

B - Command Reference

B - Command Reference

35

Software Distribution with ESP Package Manager
epm(1)
Name

epm - create software packages.
Synopsis

epm [-a architecture 1[-fformat]1[-gl1[-k1[-mname][-n[mrs]][-s setup.ext 1]
--depend] [--help][--keep-files] [--output-dir directory] [--setup-image setup.ext]
[--setup-program /foo/bar/setup] [--setup-types setup.types 1[--uninstall-program
/foo/bar/uninst 1[-v] [name=value ... name=value] product [listfile]

Description

epm(1l) generates software packages complete with installation, removal, and (if necessary)
patch scripts. Unless otherwise specified, the files required for product are read from a file
named "product.list".

Options
The following options are recognized:

-a architecture
Specifies the actual architecture for the software. Without this option the generic
processor architecture is used ("intel", "sparc", "mips", etc.)

-f bsd
Generate a BSD distribution suitable for installation on a FreeBSD, NetBSD, or
OpenBSD system.

-f deb
Generate a Debian distribution suitable for installation on a Debian-based Linux
system.

-f native
Generate a native distribution. This uses deb or rom for Linux, bsd for FreeBSD,
NetBSD, and OpenBSD, and macos for macOS. All other operating systems default to
the portable format.

-f macos

-f macos-signed
Generate a macOS software package. The macos-signed format uses the signing
identity in the EPM_SIGNING_IDENTITY environment variable.

-f portable
Generate a portable distribution based on shell scripts and tar files. The resulting
distribution is installed and removed the same way on all operating systems. [default]

-f rom

-f rom-signed
Generate a Red Hat Package Manager ("RPM") distribution suitable for installation on
an RPM-based Linux system. The rom-signed format uses the GPG private key you
have defined in the ~/.rpmmacros file.

Disable stripping of executable files in the distribution.

36 epm(1)

Software Distribution with ESP Package Manager

Keep intermediate (spec, etc.) files used to create the distribution in the distribution
directory.

-m name
Specifies the platform name as a string. The default is to use the auto-generated
name from the -n option.

-n[mrs]
Specifies the operating system and machine information that is included in the
package name. Distributions normally are named
"product-version-system-release-machine.ext" and
"product-version-system-release-machine-patch.ext" for patch distributions. The
"system-release-machine" information can be customized or eliminated using the
appropriate trailing letters. Using -n by itself will remove the
"system-release-machine" string from the filename entirely. The letter 'm' includes
the architecture (machine). The letter 'r' includes the operating system version
(release). The letter 's' includes the operating system name.

Increases the amount of information that is reported. Use multiple v's for more
verbose output.
--depend
Lists the dependent (source) files for all files in the package.
--output-dir directory
Specifies the directory for output files. The default directory is based on the operating
system, version, and architecture.
-s setup.ext
--setup-image setup.ext
Include the ESP Software Wizard with the specified image file with the distribution.
This option is currently only supported by portable distributions.
--setup-program /foo/bar/setup
Specifies the setup executable to use with the distribution. This option is currently
only supported by portable distributions.
--setup-types setup.types

Specifies the setup.types file to include with the distribution. This option is currently only
supported by portable distributions.

--uninstall-program /foo/bar/uninst

Specifies the uninst executable to use with the distribution. This option is currently
only supported by portable distributions.

Environment
The following environment variables are supported by epm:

EPM_SIGNING_IDENTITY
The common name that should be used when signing a package.

List Files

The EPM list file format is now described in the epm.list(5) man page.

epm(1) 37

Software Distribution with ESP Package Manager
See Also

epminstall(1l), mkepmlist(1l), epm.list(5), setup(1).
Copyright

Copyright © 1999-2020 by Michael R Sweet, All Rights Reserved. Copyright © 2020 by Jim
Jagielski, All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file
except in compliance with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the
License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY

KIND, either express or implied. See the License for the specific language governing
permissions and limitations under the License.

38 epm(1)

http://www.apache.org/licenses/LICENSE-2.0

Software Distribution with ESP Package Manager
epminstall(1)
Name

epminstall - add a directory, file, or symlink to a list file.
Synopsis

epminstall [options] filelfile2...fileNdirectory
epminstall [options] filelfile2
epminstall [options] -d directoryldirectory?2...directoryN

Description

epminstall adds or replaces a directory, file, or symlink in a list file. The default list file is
"epm.list" and can be overridden using the EPMLIST environment variable or the --list-file
option.

Entries are either added to the end of the list file or replaced in-line. Comments, directives,
and variable declarations in the list file are preserved.

Options
epminstall recognizes the standard Berkeley install(8) command options:

-b
Make a backup of existing files (ignored, default for epm.)
-C
BSD old compatibility mode (ignored.)
-g group
Set the group owner of the file or directory to group. The default group is "sys".
-m mode
Set the permissions of the file or directory to mode. The default permissions are 0755
for directories and executable files and 0644 for non-executable files.
-0 owner
Set the owner of the file or directory to owner. The default owner is "root".
-s
Strip the files (ignored, default for epm.)
--list-file filename.list
Specify the list file to update.

See Also
epm(1), mkepmlist(1), epm.list(5).
Copyright

Copyright © 1999-2020 by Michael R Sweet, All Rights Reserved. Copyright © 2020 by Jim
Jagielski, All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file
except in compliance with the License. You may obtain a copy of the License at

epminstall(1) 39

Software Distribution with ESP Package Manager
http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the
License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
KIND, either express or implied. See the License for the specific language governing
permissions and limitations under the License.

40 epminstall(1)

http://www.apache.org/licenses/LICENSE-2.0

Software Distribution with ESP Package Manager
mkepmlist(1)
Name
mkepmlist - make an epm list file from a directory.
Synopsis
mkepmlist [-g group 1[-u user] [--prefix directory 1directory [... directory]
Description

mkepmlist(1) recursively generates file list entries for files, links, and directories. The file
list is send to the standard output.

Options
mkepmlist supports the following options:

-g group
Overrides the group ownership of the files in the specified directories with the

specified group name.

-u user
Overrides the user ownership of the files in the specified directories with the specified
user name.

--prefix directory
Adds the specified directory to the destination path. For example, if you installed files
to "/opt/foo" and wanted to build a distribution that installed the files in "/usr/local",
the following command would generate a file list that is installed in "/usr/local":

mkepmlist --prefix=/usr/local /opt/foo >foo.list
See Also
epm(1l), epminstall(1l), epm.list(5).
Copyright

Copyright © 1999-2020 by Michael R Sweet, All Rights Reserved. Copyright © 2020 by Jim
Jagielski, All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file
except in compliance with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the
License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY

KIND, either express or implied. See the License for the specific language governing
permissions and limitations under the License.

mkepmlist(1) 41

http://www.apache.org/licenses/LICENSE-2.0

42

Software Distribution with ESP Package Manager

setup(1)

Software Distribution with ESP Package Manager
setup(l1)
Name
setup - graphical setup program for the esp package manager
Synopsis
setup [directory]
Description
setup(l) provides a graphical installation interface for EPM-generated portable installation
packages. It presents a step-by-step dialog for collecting a list of packages to install and

accepting any license agreements for those packages.

setup searches for products in the current directory or the directory specified on the
command-line.

Installation Types

The default type of installation is "custom". That is, users will be able to select from the list
of products and install them.

setup also supports other types of installations. The setup.types file, if present, defines the
other installation types.

See Also
epm(1l), setup.types(5).
Copyright

Copyright © 1999-2020 by Michael R Sweet, All Rights Reserved. Copyright © 2020 by Jim
Jagielski, All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file
except in compliance with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the
License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY

KIND, either express or implied. See the License for the specific language governing
permissions and limitations under the License.

setup(1) 43

http://www.apache.org/licenses/LICENSE-2.0

44

Software Distribution with ESP Package Manager

setup(1)

C - List File Reference

This appendix provides a complete reference for the EPM list file and setup types formats.

The EPM List File Format

Each EPM product has an associated list file that describes the files to include with the
product. Comment lines begin with the "#" character and are ignored. All other non-blank
lines must begin with a letter, dollar sign ("$"), or the percent sign ("%").

List File Directives
The following list describes all of the list file directives supported by EPM:
$name=value
Sets the named variable to value. Note: Variables set in the list file are
overridden by variables specified on the command-line or in the current
environment.
%copyright copyright notice
Sets the copyright notice for the file.
%description description text
Adds a line of descriptive text to the distribution. Multiple lines are supported.

%format format [... format]

Uses following files and directives only if the distribution format is the same as
format.

%format !format [... format]

Uses following files and directives only if the distribution format is not the
same as format.

%include filename
Includes files listed in filename.

%incompat product
%incompat filename

Indicates that this product is incompatible with the named product or file.

%if variable [... variable]
%if 'variable [... variable]
%ifdef variable [... variable]
%ifdef 'variable [... variable]
%elseif variable [... variable]

C - List File Reference 45

46

Software Distribution with ESP Package Manager

%elseif lvariable [... variable]

%elseifdef variable [... variable]

%elseifdef lvariable [... variable]

%else

%endif
Conditionally includes lines in the list file. The %if lines include the lines that
follow if the named variables are (not) defined with a value. The %ifdef lines
include the lines that follow if the named variables are (not) defined with any
value. These conditional lines cannot be nested.

%install script or program

Specifies a script or program to be run after all files are installed. (This has
been obsoleted by the %postinstall directive)

%license license file

Specifies the file to display as the software license.
%packager name of packager

Specifies the name of the packager.
%patch script or program

Specifies a script or program to be run after all files are patched. (This has
been obsoleted by the %postpatch directive)

%postinstall script or program
%postinstall <scriptfile
%postinstall <<string
Specifies a script or program to be run after all files are installed.
%postpatch script or program
%postpatch <scriptfile
%postpatch <<string
Specifies a script or program to be run after all files are patched.
%postremove script or program
%postremove <scriptfile
%postremove <<string
Specifies a script or program to be run after removing files.
%preinstall script or program
%preinstall <scriptfile
%preinstall <<string

Specifies a script or program to be run before all files are installed.

The EPM List File Format

Software Distribution with ESP Package Manager

%prepatch script or program
%prepatch <scriptfile
%prepatch <<string

Specifies a script or program to be run before all files are patched.
%preremove script or program
%preremove <scriptfile
%preremove <<string

Specifies a script or program to be run before removing files.
%product product name

Specifies the product name.
%provides product name

Indicates that this product provides the named dependency.
%readme readme file

Specifies a README file to be included in the distribution.

%remove script or program

Specifies a script or program to be run before removing files. (This has been
obsoleted by the %preremove directive)

%release number

Specifies the release or build number of a product (defaults to 0).
%replaces product

Indicates that this product replaces the named product.

%requires product
%requires filename

Indicates that this product requires the named product or file.
%system system[-release] [... system[-release]]

Specifies that the following files should only be used for the specified
operating systems and releases.

%system lsystem[-release] [... system[-release]]

Specifies that the following files should not be used for the specified operating
systems and releases.

%system all

The EPM List File Format 47

48

Software Distribution with ESP Package Manager

Specifies that the following files are applicable to all operating systems.
%vendor vendor or author name

Specifies the vendor or author of the product.
%version version number

Specifies the version number of the product.

¢ mode user group destination source
C mode user group destination source

Specifies a configuration file for installation. The second form specifies that
the file has changed or is new and should be included as part of a patch.
Configuration files are installed as "destination.N" if the destination already
exists.

d mode user group destination -
D mode user group destination -

Specifies a directory should be created when installing the software. The
second form specifies that the directory is new and should be included as part
of a patch.

f mode user group destination source [nostrip()]
F mode user group destination source [nostrip()]

Specifies a file for installation. The second form specifies that the file has
changed or is new and should be included as part of a patch. If the "nostrip()"
option is included, the file will not be stripped before the installation is
created.

f mode user group destination source/pattern [nostrip()]
F mode user group destination source/pattern [nostrip()]

Specifies one or more files for installation using shell wildcard patterns. The
second form specifies that the files have changed or are new and should be
included as part of a patch. If the "nostrip()" option is included, the file will not
be stripped before the installation is created.

i mode user group service-name source ["options"]
| mode user group service-name source ["options"]

Specifies an initialization script for installation. The second form specifies that
the file has changed or is new and should be included as part of a patch.
Initialization scripts are stored in /etc/software/init.d and are linked to the
appropriate system-specific directories for run levels 0, 2, 3, and 5.
Initialization scripts must accept at least the start and stop commands. The
optional options following the source filename can be any of the following:

order(string)
Specifies the relative startup order compared to the required and used
system functions. Supported values include First, Early, None, Late, and

The EPM List File Format

Software Distribution with ESP Package Manager

Last (macOS only).

provides(name(s))
Specifies names of system functions that are provided by this startup

item (macOS only).

requires(name(s))
Specifies names of system functions that are required by this startup

item (macOS only).

runlevels(/evels)
Specifies the run levels to use.

start(number)
Specifies the starting sequence number from 00 to 99.

stop(number)
Specifies the ending sequence number from 00 to 99.

uses(name(s))
Specifies names of system functions that are used by this startup item

(macOS only).

| mode user group destination source
L mode user group destination source

Specifies a symbolic link in the installation. The second form specifies that the
link has changed or is new and should be included as part of a patch.

R mode user group destination

Specifies that the file is to be removed upon patching. The user and group
fields are ignored. The mode field is only used to determine if a check should

be made for a previous version of the file.

List Variables

EPM maintains a list of variables and their values which can be used to substitute values in
the list file. These variables are imported from the current environment and taken from the
command-line and list file as provided. Substitutions occur when the variable name is

referenced with the dollar sign ($):

%spostinstall <<EOF

echo What is your name:
read $$name

echo Your name is $$name
EOF

f 0555 root sys ${bindir}/foo foo
f 0555 root sys $datadir/foo/foo.dat foo.dat

Variable names can be surrounded by curly brackets (${name}) or alone ($name); without
brackets the name is terminated by the first slash (/), dash (-), or whitespace. The dollar sign

can be inserted using $$.

The EPM List File Format

49

Software Distribution with ESP Package Manager

The setup.types File

The EPM setup program normally presents the user with a list of software products to
install, which is called a "custom" software installation.

If a file called setup.types is present in the package directory, the user will instead be
presented with a list of installation types. Each type has an associated product list which
determines the products that are installed by default. If a type has no products associated
with it, then it is treated as a custom installation and the user is presented with a list of
packages to choose from.

The setup.types file is an ASCII text file consisting of type and product lines. Comments can
be inserted by starting a line with the pound sign (#). Each installation type is defined by a
line starting with the word TYPE. Products are defined by a line starting with the word
INSTALL:

Pre-select the user packages

TYPE Typical End-User Configuration
INSTALL foo

INSTALL foo-help

Pre-select the developer packages
TYPE Typical Developer Configuration
INSTALL foo

INSTALL foo-help

INSTALL foo-devel

INSTALL foo-examples

Allow the user to select packages
TYPE Custom Configuration

In the example above, three installation types are defined. Since the last type includes no
products, the user will be presented with the full list of products to choose from.

50 The setup.types File

	Table of Contents
	Preface
	Notation Conventions
	Abbreviations
	Other References
	Help Me Improve This Book!
	Acknowledgments

	1 - Introduction to EPM
	What is EPM?
	History and Evolution
	Existing Software Packaging Systems
	Design Goals of EPM
	Resources

	2 - Building EPM
	Requirements
	Configuring the Software
	Building the Software
	Installing the Software

	3 - Packaging Your Software with EPM
	The Basics
	Building a Software Package
	Package Files

	4 - Advanced Packaging with EPM
	Including Other List Files
	Dependencies
	Scripts
	Conditional Directives
	Protecting Object Files from Stripping
	Software Patches
	Variables
	Init Scripts
	Literal Package Data

	5 - EPM Packaging Examples
	Packaging the EPM Software

	Apache License, Version 2.0
	 APPENDIX: How to apply the Apache License to your work

	B - Command Reference
	epm(1)
	epminstall(1)
	mkepmlist(1)
	setup(1)

	C - List File Reference
	The EPM List File Format
	The setup.types File

